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Abstract: We have investigated the nature of two conformations recently discovered by others through extensive searches 
of the conformational space of cyclononane. Although these conformations are indeed energy minima with the MM2 force 
field, they have only minute energy barriers separating them from previously known conformations of much lower energy and, 
therefore, have rather questionable significance. One of the new conformations is not a local energy minimum with some 
force fields. Explorations of conformational space are shown to benefit from a determination of the lowest energy transition 
states between all pairs of conformations. Convergence and stability problems in applying the full Newton-Raphson iteration 
method are investigated, and the key role of inflection points (particularly of the previously unappreciated "positive" type) 
on the energy hypersurface is presented. 

The local energy minima in the conformational space of typical 
organic molecules can be determined fairly easily by recently 
developed search methods.1"4 This has become quite practical 
because the required computational power is now readily available. 
The determination of local energy minima is an important problem 
in the application of molecular mechanics, and it presents a 
challenge when rings containing many atoms are present. The 
medium- and large-ring cycloalkanes exemplify these problems 
well, and they have, therefore, served as test molecules for search 
programs.1"3 Indeed, the medium-ring cycloalkanes have his­
torically been in the forefront of conformational developments. 
In the early days of conformational analysis, only symmetrical 
conformations of the medium-ring cycloalkanes were thought to 
be local energy minima or even transition states for conformational 
interconversion,5 but this proved not to be the case.6,7 It is now 
well appreciated, following the work of Ermer,8 that energy 
minima have to be carefully distinguished from conformational 
transition states (saddle points on the energy hypersurface) as well 
as from higher order energy extrema, such as hills on the hy-
persuface. This can best be done by determining (a) that the 
gradient of the energy with respect to each of the Cartesian 
coordinates of the atoms in the molecule is zero and (b) that the 
37V - 6 (or 3/V - 5 for a linear molecule) vibrational frequencies 
calculated in the harmonic approximation have real values. The 
latter is equivalent to stating that all the eigenvalues of the 
mass-weighted Hessian matrix are positive, as the vibrational 
frequencies are proportional to the square roots of the corre­
sponding eigenvalues. But is this sufficient for an energy minimum 
to have real significance? We think not. 

The early methods of finding energy minima and conforma­
tional interconvesion paths of the cycloalkanes made use of me­
chanical (e.g., Dreiding) models in conjunction with molecular 
mechanics calculations. The introduction by Wiberg and Boyd9 

of a "driving" procedure was of importance, as it allowed for 
computer searching and monitoring the energy by changing one 
or more torsional angles by small increments while keeping other 
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degrees of freedom optimized. Maps of the energy versus two 
internal coordinates can be obtained by this method, although this 
requires a large number of calculations, especially if a fine grid 
is used. In principle, a high-dimensional map of the energy in 
terms of the N torsional angles of an ,/V-membered cycloalkane 
can be obtained, but the number of energy calculations for a 10° 
increment from 0 to 360° for each torsional angle is 36", which 
is greater than 1015 for cyclotetradecane and is, therefore, quite 
impractical. The recently proposed search methods, which are 
not quite exhaustive for local energy minima, can be done on a 
VAX-type computer for molecules such as cyclotetradecane, 
although the time required may extend over days.10 

Automatic search methods can locate local energy minima that 
have been missed in previous less extensive studies.1"3 In contrast, 
one-dimensional searches have been termed "primitive" and need 
the subjective judgment of the user.3 However, the latter methods, 
with judicious driving of torsional angles and especially in asso­
ciation with the full-matrix Newton-Raphson procedure to con­
verge on energy extrema, can provide much information about 
the energy surface, including the lowest barriers between all pairs 
of conformations. Unfortunately, present versions of automatic 
search programs do not deal with the relationships of the local 
energy minima on the energy hypersurface, although they may 
do so in the future; in particular, the (lowest) barriers separating 
the various conformations have generally been ignored, possibly 
leading to a poor understanding of the conformational properties 
of the molecule. The situation is compounded by an almost 
exclusive use of a single force field (invariably MM2) in automatic 
searches with molecular mechanics calculations.1"3 The MM2 
force field has the virtue of having parameters for numerous kinds 
of atoms and structures, so it has been widely used and has proven 
to be generally useful." For saturated hydrocarbons, several other 
equally satisfactory but significantly different force fields are 
available.8'12'13 Finally, the MM2 program uses a block-diagonal 
Newton-Raphson procedure, which is efficient for converging on 
energy minima but is unfortunately not very suitable for locating 
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transition states." In the full Newton-Raphson method, the 
complete 3N X ZN matrix of the second derivatives of the energy 
with respect to the Cartesian coordinates of the N atoms in a 
molecule is calculated, and convergence to local energy minima, 
transition states, and higher order extrema all take place equally 
well, provided that a suitable starting point is chosen. 

If a barrier of less than a few tenths of a kilocalorie per mole 
separates one local energy minimum (A) from another one (B), 
then A and B cannot be treated as separate conformations from 
either a thermodynamic or quantum point of view.14 The energy 
hypersurface in the vicinity of both A and B needs to be considered 
rather than just the vibrational frequencies in the harmonic ap­
proximation. This kind of situation has been extensively inves­
tigated when A and B have the same energy or at least similar 
energies, as in ring inversion in four-membered rings or pseudo-
rotation in five-membered rings. If A is higher in energy than 
B by more than 1 or 2 kcal/mol with the barrier for the A to B 
transformation being very small as described above, then B is a 
"normal" local energy minimum, while A has very little, if any, 
independent thermodynamic significance; the presence of the A 
minimum merely affects the relative spacing of the low-energy 
vibrational levels of B. This is especially true if the calculated 
zero-point energy (ZPE) level of A lies above the energy of the 
transition state that separates A from B. Even when the ZPE 
level of A is below the barrier, tunneling can be important if the 
energy difference between the ZPE level and the barrier is small. 
Again, in such a case the energy minimum hardly has an inde­
pendent existence. Although calculations of ZPE's based on the 
harmonic approximation are not strictly correct, especially when 
the apparent ZPE level is higher or comparable to the barier, it 
is apparent that A is not distinguishable from a vibrationally 
excited B conformation. The population of the nth vibrational 
state is dependent on the Boltzmann factor, e-(«+i/2Wr w n e r e 
E = Nhv and ./V is Avogadro's number. At room temperature, 
RT « 600 cal/mol, while, in matrix isolation work at 50 K, RT 
= 100 cal/mol, so that the B conformation can have appreciably 
populated vibrational levels that are comparable to the energy 
of A. Under these conditions, A and B cannot be treated inde­
pendently and A does not have any real significance.14 

We have used several force fields to reexamine the cyclononane 
energy hypersurface in the vicinity of the new conformations to 
determine whether the claims2-3 that previous workers7'1516 did 
not find all the local energy minima are really meaningful in the 
sense described above. In doing so, we have encountered severe 
convergence and stability problems when using the (full) New­
ton-Raphson procedure. Such difficulties are rather well-known, 
and they have been blamed on such things as numerical errors 
or a bad starting geometry where the hypersurface in any direction 
has (accidentally) a very small quadratic component.17 Because 

(14) The question of whether the term "conformation" should be restricted 
to a local energy minimum or should also include transition states and other 
energy extrema or even geometries that are not any of these has not been 
resolved.7 Somewhat similar problems occur in defining the term "isomer": 
Eliel, E. L. Isr. J. Chem. 1976,15, 7-11. See also: Mislow, K.; Bickart, P. 
lsr. J. Chem. 1976, 15, 1-6. Wooley, R. G. Isr. J. Chem. 1980, 19, 30-46. 
Dugundji, J.; Showell, J.; Kopp, R.; Marquarding, D.; Ugi, I. Isr. J. Chem. 
1980, 20, 20-35. Mezey, P. G. In Structure and Dynamics of Molecular 
Systems; Daudel, R., Korb, J.-P., Lemaistre, J.-P., Maruani, J., Eds.; Reidel: 
Boston, 1985; pp 41-56. Symmetrical geometries of molecules are always 
attractive to consider, and for any given symmetry the geometry can always 
be refined to an energy extremum. But, this is often not a local energy 
minimum or even a transition state, yet it is often convenient to talk about 
these as "conformations". Dale7 has suggested that the term "conformer" be 
restricted to a definite local energy minimum and that the term 
"conformation" have a wider meaning, but this suggestion has unfortunately 
not been widely adopted. In any case, a phrase such as "this hydrocarbon 
exists in three conformations" clearly implies three local energy minima. For 
a strictly correct quantum mechanical treatment of flexible molecules, which 
requires the use of permutations of identical nuclei, see: Bunker, P. R. 
Molecular Symmetry and Spectroscopy; Academic Press: New York, 1979. 
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Figure 1. Examples of negative (n) and positive (p) inflection points. 
Curve II has a local energy minimum that is not present in curve I. 

we use a program where the derivatives are calculated analytically 
and all noninteger variables have about 15 digits of accuracy,1218 

the former cannot be the problem and the latter does not explain 
oscillating behavior or a sudden instability during the iteration 
procedure. The results presented below show the origins of these 
problems and how to deal with them. 

Inflection Points on the Energy Hypersurface. An inflection 
point corresponds to an extremum (maximum or minimum) in 
the tangent (or slope) of the function rather than in the function 
itself.19 For example, with the one-dimensional function 

y = xi + bx (D 
an inflection point occurs at x = 0 because d2y/dx2 is 0 and 
tfy/dx3 is finite. The relative signs of d3y/dx3 and dy/dx depend 
on the sign of b, but a distinction between different types of 
inflection points based on these relative signs has not generally 
been made in the mathematical literature,19 but it is important 
for our purpose. For convenience, the case of the first and third 
derivatives having like signs is defined as a positive inflection point, 
and similarly a negative inflection point has opposite signs for these 
derivatives (Figure 1). A "zero" inflection point can also be 
defined as that having a zero first derivative; this is sometimes 
called a horizontal inflection point.17b 

The Newton-Raphson iteration for finding an extremum in a 
one-dimensional function is a search for a zero first derivative. 
In this procedure, the first and the second derivatives (slope and 
curvature, respectively) at an arbitrary starting point are calculated 
and the correction to the variable x, which is given by minus the 
ratio of the slope to the curvature, is used to calculate a new value 
of x. The second derivative is generally finite at an extremum, 
and the slope and correction become zero; in the above system 
this occurs for a negative b at x = ±[(-6/3) 1Z2]. 

At an inflection point, by contrast, the first derivative is gen­
erally nonzero but the second derivative is zero. Thus, the cor­
rection at that point becomes ±«>, and the Newton-Raphson 
procedure diverges. Near (but not at) this (negative) inflection 
point, which occurs at x = 0 in the present instance, convergence 
to a local minimum or maximum occurs for positive or negative 
x, respectively, as long as b is negative. 

If b is positive in eq 1, iteration results in a chaotic behavior 
for a general starting point. Indeed, the Newton-Raphson pro­
cedure for finding the roots of a polynomial, especially in the 
complex plane, is known to lead to chaotic or nonchaotic behavior, 
depending on the situation, and the behavior of cubic equations 
in the complex plane has been investigated.19 However, our interest 
is not in the roots but in the extrema exhibited by eq 1. For 

(18) (a) Baas, J. M. A.; van de Graaf, B.; van Veen, A.; Wepster, B. M. 
Tetrahedron Lett. 1978, 819-820. (b) van de Graaf, B.; Baas, J. M. A.; van 
Veen, A. Reel. Trav. Chim. Pays-Bas 1980, 99, 175-178. (c) van de Graaf, 
B.; Baas, J. M. A. J. Comput. Chem. 1984, 5, 314-321. (d) MOL,12" an input 
and database management program interfaced to a modified version of DELPHI, 
was used for these calculations: Anet, F. A. L.; Anet, R., Unpublished work. 
The DELPHI program was modified to provide displacements in term of internal 
coordinates for the normal modes.1* 

(19) An inflection point corresponds to an extremum (maximum or min­
imum) in the tangent (or slope) of the function rather than in the function 
itself: 7"Ae VNR Concise Encyclopedia of Mathematics; Gellert, W., Kiistner, 
H., Hellwich, M., Kastner, H., Eds.; Van Nostrand Reinhold: New York, 
1977, pp 424-431. 
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simplicity, the function with b = 1 will be discussed, i.e. 

y = x3 + x (2) 

With the subscript to x indicating the iteration number, the 
Newton-Raphson method for searching for an extremum in y gives 
a correction of -(3x2 + l) /6x and thus 

Xn+1 = (3x„ 2 - l ) / 6x , , (3) 

For x„ - ± ' / 3 , xn+i = -xn, so that continued iteration of eq 
3 gives rise to stable oscillations. Mathematically,200 + ' / 3 and 
- ' / 3 constitute periodic points of order 2, and other values of x, 
such as ±1 , ±(1 ±2/-\/3), etc., are eventually periodic points 
because they lead to periodic points. Equation 1 diverges to infinity 
for Xn = 0 or for any value of x that leads to this value, e.g., 
± l / \ / 3 , ±(1 ± v / 2) /v / 3 , etc., which may be considered as the 
Jcn-I, x„-2, etc., terms. These special properties of eq 1 upon 
iteration are valid only for exact arithmetic but not in general for 
computer arithmetic with finite numerical accuracy. Even a small 
deviation from the above values ultimately leads to a chaotic 
behavior; e.g., if x differs from '/3 by 1 ppm, chaos sets in after 
about 25 iterations (Figure 2). For a starting value of 1.0 + 10"20, 
chaos occurs after about 70 iterations, whereas, for a starting value 
of 1.0, x has changed from the regular ± ' / 3 oscillations by less 
than 1 part in 104 after 100 iterations and the entire change is 
the result of finite numerical accuracy. These calculations were 
done using FORTRAN REAL*16 variables, i.e., with about 33 digits 
of accuracy. 

If |x| is large (> 1 /V3) , continued iteration of eq 3 reduces \x\ 
by about a factor of 2 per iteration while the sign of x is main­
tained. When |x| becomes less than 1/V3, which ultimately must 
happen, a sign inversion takes place and Xn+1 and Xn then have 
opposite signs. This sign alteration continues as long as x remains 
between - 1 / V 3 and +1 /V3 , and the number of consecutive sign 
alternations is larger the closer x is initially to ±1/3 . Ultimately, 
the value of |x| becomes less than (V2 - 1) /V3, i.e., 0.239, 
whereupon |x| jumps beyond 1 / V 3 and the whole process repeats. 
There is no regularity, however, so that the iterations lead to a 
chaotic behavior with an extreme sensitivity to the initial value, 
as shown in Figure 2 for two closely similar values of x. In the 
chaotic regime, |x| typically reaches a maximum value of between 
5 and 500 during 100 iterations. In principle, arbitrarily large 
excursions of x can occur, but in practice they are so rare that 
they are not observed. The average value of x converges to the 
(positive) inflection point (x = 0), but the convergence is slow 
unless the large excursions are omitted from the average or limits 
are set to the correction to be made to x at each iteration. 

The behavior of eq 1 with b - 1 also occurs for any other 
positive value of b, and the presence of a small x2 term does not 
change the general features of the system. In molecular mechanics 
calculations, the energy hypersurface is multidimensional and 
arises not only from simple quadratic terms (e.g., bond stretching, 
which is generally quadratic in both internal and Cartesian co­
ordinates) but also from terms (e.g., bond angle bending) that 
are not quadratic in Cartesian coordinates, even though they may 
be quadratic in the internal coordinates, as well as terms (e.g., 
nonbonded and torsional strains) that are not quadratic in either 
internal or Cartesian coordinates. The full-matrix Newton-
Raphson iteration in molecular mechanics is almost always done 
on the Cartesian coordinates because these form a nonredundant 
set, whereas the choice of a nonredundant set of internal coor­
dinates is arbitrary. The energy (as a function of the Cartesian 
coordinates) at any point on the energy hypersurface can be 
expanded in a power series about that point where the most 
important terms involve the zero, first, second, and third powers. 
The analysis given above for a simple one-dimensional case can 

(20) (a) Schuster, H. G. Deterministic Chaos; Physik-Verlag: Weinheim, 
1984; p 132. (b) Barnsley, M. F.; Devaney, R. L.; Mandelbrot, B. B.; Peitgen, 
H.-O,; Saupe, D.; Voss, R. F. The Science of Fractal Images; Springer-Verlag; 
New York, 1988. (c) Devaney, R. L. an Introduction to Chaotic Dynamical 
Systems, 2nd ed: Addison-Wesley: New York, 1989. An exhaustive search 
of the mathematical literature for the exact situation described in the present 
work has not been made, but it likely has been investigated previously. 
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Figure 2. Deterministic chaotic behavior during the first 50 iterations 
of the Newton-Raphson method for search for an extremum in y = x1 

+ x for starting values of x = 0.4, 1 ppm more than 0.4, and for 1 ppm 
less than '/3 (a stable oscillatory behavior is observed for precisely ' /3) . 
The horizontal axis is the iteration number, and the vertical axis shows 
the change in x during the iteration. 

be extended to a multidimensional surface. Term higher than 
the third power give important contributions to the corrections 
if large excursions (changes in the coordinates) are made from 
the starting point, and in such a system a positive inflection point 
will ultimately give such a large correction that a return to that 
inflection point no longer occurs, in contrast to the situation with 
eq 2. In the absence of a cubic term, the presence of a fourth-order 
term (as in x4 + bx) does not prevent convergence irrespective 
of whether a quadratic term is present or not, but the rate of 
convergence is quite low if the quadratic term is close to zero. 

The Newton-Raphson method is of course well-known to 
converge on an energy extremum of any order, as long as the 
starting point is sufficiently close to the extremum.8'17'18 In 
particular, convergence can occur to a local (or global) energy 
minimum or to a conformational transition state (saddle point) 
on an energy hyersurface. The common type of inflection point 
is one that separates a local energy minimum from a transition 
state (saddle point), and the curvature changes from positive to 
negative as the energy increases monotonically, as shown by the 
points n in Figure 1 for one-dimensional surfaces. This corresponds 
to a negative inflection point, in our terminology, and at such a 
point the curvature (second derivative) is zero while the first and 
third derivatives are finite and have opposite signs. The New­
ton-Raphson method becomes unstable at or near a negative 
inflection point, and e.:tremely large positive or negative corrections 
to the coordinates are calculated. This instability can be overcome 
by scaling so that the largest correction is less than some given 
value, e.g., 0.1 k. The corrections always result in a change that 
is away from the inflection point, i.e., the inflection point is never 
crossed, and the stability tends to increase rather than decrease 
as the calculations proceed. 

However, if the inflection point results from a negative to 
positive change in curvature as the energy increases montonically, 
as in point p in curve I in Figure 1, the Newton-Raphson method 
in general gives an oscillating behavior that is chaotic and is 
punctuated occasionally by large excursions away from the in­
flection point, as was described above for a simple cubic curve. 
If the oscillations are increasingly dampened by the limiting 
procedure just mentioned, then a near convergence to a positive 
inflection point is achieved and in this case the calculated cor­
rections are always toward rather than away from the inflection 
point. The only smooth way of getting out of this impasse is to 
constrain the geometry so that convergence to a true energy 
extremum ultimately follows removal of the constraint. A positive 
inflection point, unlike a negative one, suggests the presence of 
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Table I. Molecular Mechanics Steric Energies (kcal/mol)° and Lowest Vibrational Frequencies (cm-1) of Some Cyclononane Conformations and 
Transition States 

conformation 

[333] (TBC) 
TCC ([9] or [144]) 
TCTC 
(TCTC-TCC)*' 
SCC 
(SCC-TCC)" 

E 

0.00 
0.77 
2.22 
2.40 
5.67 
5.75 

MM2 

V 

177 
131 
93 

69; 
80 

76/ 

1 

E 

0.00 
1.25 
2.97 
3.17 
5.53 
5.60 

Boyd- 1» 

P 

173 
129 
97 

77/ 
57 

54/ 

Boyd-9c 

E 

0.00 
0.36 
2.119 
2.122 

f.g 

V 

168 
126 
42 

39/ 

Ermer-Lifson1* 

E w 

0.00 193 
0.56 140 
2.48 68 
2.51 56; 

/ 

•117.9\ 

73.5 I 

•85.7 \ 

121.9 

TCC 

/•117.9 

I 73.5 

/•85.7 

-147.8\ 

90.4 I 

-55.8\ 

88.5 

TCTC 

/•96.7 

\l02.9 

/•117.6 

-141.4\ / 

88.0 / \ ! 

-65.9\ / . 

99.0 

(TCC-TCTC)' 

-104.6 

46.2 

•122.0 \ / -122.0 -118.7 \ /-129.0 

130.3 / \ 130.3 125.5/ \ 122.9 

•84.5 84.5 •90.3 80.1 

68.6 

"Energy from molecular mechanics calculations relative to the [333] conformation. The actual force field energies for the [333] conformation are 
as follows: 23.39 (MM2); 16.16 (Boyd-1); 16.43 (Boyd-9); 23.55 (Ermer-Lifson). These numbers cannot be compared with one another. *One 
torsional parameter per C-C bond. 'Nine torsional parameters per C-C bond. ''Modified as described in footnote 22. 'Transition state. The / in 
the v column indicates an imaginary frequency. -̂ Not a local energy minimum. *See Figure 4 for a part of the energy hypersurface; the torsional 
angles at the inflection point, where the energy is 21.428 kcal/mol, are given in Figure 5. 

an incipient local energy minimum, and changes in force-field 
parameters can conceivably convert such a positive inflection point 
into a true local energy minimum, as in going from curve I to curve 
II in Figure 1; in general, the barrier separating this minimum 
from a lower energy minimum will be small. As described below, 
this effect is found in the SCC form of cyclononane. In a gradual 
change from curve I to curve II behavior, the positive inflection 
point disappears and is replaced by a negative inflection point and 
a local minimum, with the dividing situation between the domains 
of curve I and curve II exhibiting a zero inflection point.21 

Cyclononane Energy Hypersurface Near the TCTC and SCC 
Forms. We have repeated the molecular mechanics calculations 
on the two new cyclononane conformations described by Still2 and 
Raber3 (TCTC and SCC in Raber's nomenclature) using a 
modified DELPHI program.12,18 Although both of these confor­
mations are indeed local energy minima when the MM2 force field 
is used, they are separated from the previously known TCC 
conformation by extremely small barriers. The sequence of ring 
torsional signs is the same in both the TCTC and TCC forms, 
with the largest difference in the torsional angles being only 33.4° 
(Figure 3). In fact, the TCTC is an unsymmetrical variant of 
the TCC conformation where some torsional angles have slightly 
increased and others have slightly decreased and where the energy 
has increased by 1.45 kcal/mol. Futhermore, in proceeding from 
the TCTC to the TCC form none of the torsional angles cross 
an eclipsed (120°) situation by more than 2°, so the barrier 
separating these two forms is expected to be very small. Indeed, 
the transition state for the TCTC to TCC interconversion is very 
close to the TCTC conformation (Figure 3), the largest difference 
in torsional angle being only 10.4°, with only a difference of 0.18 
kcal/mol in energy (Table I). 

The second cyclononane form found by Still and Raber has C2 

point group symmetry like the TCC conformation, and the signs 
of the ring torsional angles show the same sequence in both cases, 
the largest difference being 56.7°. The energy of the SCC is 
higher than that of the TCC conformation by 4.9 kcal/mol. Only 
two symmetry-related torsional angles cross the 120° value, but 
by less than 10°. The SCC is essentially a TCC form that is less 
open and is elongated along the C1 axis, as shown in a diagram­
matic way in Figure 3. The SCC and TCC forms are separated 
by a barrier of only 0.08 kcal/mol with the MM2 force field (Table 
I), and the transition state is close in both geometry and energy 
to the SCC form. 

For comparison with the MM2 force field, we have also used 
three other force fields, namely, a modified Ermer-Lifson22 and 
two versions (Boyd-1 and Boyd-9) of the Boyd force field23 (Table 
I). The original Boyd force field for saturated hydrocarbons 
employed only one torsional parameter per C-C bond. Although 
this is unambiguous for unbranched cyclic and acyclic hydro­
carbons, an arbitrary choice has to be made if there is branching, 

(2I)A zero (horizontal) inflection point can only occur accidentally, and 
therefore only approximately, on the energy hypersurface of a real molecule. 

(22) The modification12" of the Ermer-Lifson force field used here neglects 
(small) cross-interaction terms: Ermer, O.; Lifson, S. J. Am. Chem. Soc. 
1973, 95,4121-4132. 

(23) Boyd, R. H. J. Chem. Phys. 1968, 49, 2574-2583. 

s c c (SCC-TCC)' 

Figure 3. Torsional angles in degrees in the TCC, TCTC, and SCC 
conformations and in the conformational transition states, (TCC-
TCTC)* and (SCC-TCC)', for the interconversion of these forms, as 
given by the MM2 force field. 

as in a fused-ring system, and the geometry and energy obtained 
will then depend on this arbitrary choice.24 To avoid such 
problems, we have used nine equal torsional parameters (with the 
force constant reduced to one-ninth) to do calculations on a pe-
rhydrophenanthrene.12* However, the energy and optimized ge­
ometry obtained with one and nine torsional parameters are not 
precisely the same with these two methods, especially when there 
are torsional angels that are far from a staggered arrangement, 
as indeed occurs in the cyclononane conformations, and we, 
therefore, report data using both one (Boyd-1) and nine (Boyd-9) 
torsional parameters per bond. 

The TCTC conformation is a local energy minimum with all 
three of the above force fields, but always with very small barriers 
preventing a downhill slide on the energy hypersurface to the TCC 
conformation. With the Boyd-9 force field, the barrier separating 
the TCTC from the TCC conformation is only 0.003 kcal/mol! 
This value is much lower than the energy difference (0.060 
kcal/mol) between the ZPE level and the potential energy min­
imum for the TCTC form in the harmonic approximation for the 
lowest energy normal mode, which corresponds to a vibrational 
frequency of 42 cm"1. 

An SCC local energy minimum does not exist with the Boyd-9 
and modified Ermer-Lifson force fields, as can be shown by 
constraining (driving) the two torsional angles (those with a value 
of 130.3° in the SCC form shown in Figure 3) between 60 and 
140° at 5° intervals so as to maintain C2 symmetry. The only 
minimum occurs near an angle of 74°, which corresponds to the 

(24) The use of nine torsional parameters is clearly mandatory in calcu­
lations on "anti-Newman" rotamers: Hounshell, W. D.; Dougherty, D. A.; 
Mislow, K. J. Am. Chem. Soc. 1978, 100, 3149-3156. 
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Figure 4. Molecular mechanics steric energies given by the MM2 (cir­
cles) and the Boyd-9 (squares) force fields in the vicinity of the SCC form 
of cyclononane under the constraint of equal U4567 and U8912 torsional 
angles, i.e., C2 symmetry. The curves are best fits to the data points 
between 118 and 135° to cubic equations as described in the text. 
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Figure 5. (I) Near-SCC geometry of cyclononane that shows a positive 
inflection point with the Boyd-9 force field, showing ring torsional angles. 
Displacements of torsional angles in I for the symmetric (II) and anti­
symmetric (III) low-energy ring distortion modes (displacements increase 
in the order 8+, +, and ++). 

TCC conformation, and beyond this value the energy increases 
monotonically. When these angles are near 130°, the other ring 
torsional angles are within 1 or 2° of those shown for the SCC 
form in Figure 3. Figure 4 shows calculations of the energy with 
the Boyd-9 force field at 1° intervals between 116 and 135° for 
these torsional angles. The driving procedure in the DELPHI 
program makes use of added torsional constraints that are in­
troduced into the solutions of the coordinate corrections by the 
Lagrangian method.1718 The desired values of the constrained 
angles are obtained precisely, provided that convergence can be 
achieved, and this was nearly always the case without having to 
limit the corrections. A positive inflection point, as will be shown 
below, occurs in the dependence of the energy with respect to the 
two torsional angles (co4567 and W8912) when these reach 124.55°; 
the other ring torsional angles and the numbering system are 
shown in Figure 5. For convenience, we discuss torsional angles 
in terms of only one of the two possible enantiomeric families of 
TCC-SUC geometries. 

The curve passing through the Boyd-9 molecular mechanics 
data in Figure 4 is the best fit of the points between 118 and 135° 
to a cubic equation, namely 

energy = 21.44 + 0.016Au + 0.00023 Aw3 

with Aw = w - 124.55°, where 124.55° is the value of Oj4567 and 
CO89J2

 a t t n e inflection point. It should be noted that no quadratic 
term in Ao) has been used and that the first and cubic powers of 
Aw have the same signs, as required for a positive inflection point. 
The curve through the Boyd-9 data in Figure 4 has a negative 
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Figure 6. Properties of the cyclononane energy hypersurface near the 
positive inflection point (I in Figure 5) as obtained with the Boyd-9 force 
field. Bottom: Dependence of the largest absolute value of the first 
derivative of the energy with respect to the Cartesian coordinates (d£ / 
dXi, where X1,represents any of the 37V coordinaes). Top: Dependence 
of the symmetric (open circles) and antisymmetric (black squares) low-
energy ring distortion modes on W4567 and W8912 (note that the frequency 
scale includes both real and imaginary values). 

curvature on the left at torsional angles lower than 124.55° and 
a positive curvature on the right at torsional angles higher than 
this value. 

The energy hypersurface can be characterized at each point 
on the curve in Figure 4 by a calculation of "vibrational 
frequencies" via a diagonalization of the mass-weighted Hessian 
(second-derivative) matrix and by a calculation of the ring torsional 
angle displacements corresponding to each vibration normal 
mode.8c Because the molecule is not at equilibrium at any of the 
geometries in Figure 4 for the Boyd-9 force field, these pseudo-
vibrational frequencies have no actual physical significance in 
terms of vibrational spectroscopy, but they do represent the 
curvature along certain directions on the energy hypersurface; they 
would be real frequencies if all first derivatives of the energy with 
respect to the cartesian coordinates were zero at the point of 
interest. As a result, the rotational frequencies are not exactly 
zero but nevertheless have absolute values less than about 5 cm"1; 
mixed rotational and vibrational modes are obtained when the 
frequencies of a vibrational mode approach zero. The transitional 
modes are invariably pure, although they emerge from the di­
agonalization routine in mixed form with the rotational modes 
when the molecule is at equilibrium because these six frequencies 
are then accurately zero and are, therefore, all mutually degen­
erate. In the vicinity of the SCC form and irrespectively of the 
force field used, the molecular mechanics calculations show that 
there are just two low-energy vibrations with frequencies less than 
150 cm -1 . The two modes differ in symmetry with respect to the 
C2 axis and can, therefore, be labeled as symmetric and anti­
symmetric. These two vibrations maintain their general char­
acteristics for O)4567 and W8912 f

rom 115 to 135°, as far as the 
associated displacements in the ring torsional angles are concerned. 
These displacements in ring torsional angles are essentially in­
dependent of the force field and are shown diagrammatically in 
Figure 5. 

The symmetric vibration (Figure 5) corresponds to a distortion 
that leads in one direction from the SCC to the T C C form with 
maintenance of the symmetry axis. The antisymmetric vibration 
leads to a loss of the C2 axis. Because the latter vibration is real 
for torsional angles greater than 123.7°, the C2 symmetry is stable 
above this value, whereas it is metastable below it, the energy being 
lowered by a distortion in either of the two possible and equivalent 
directions. The dependence of the symmetric and antisymmetric 
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low-energy modes on the torsional angles is shown in Figure 6, 
which also shows that the largest value of dE/dXi (i.e., the first 
derivative of the energy with respect to a Cartesian coordinate) 
is a minimum at the inflection point and is connected with the 
symmetrical mode. At the positive inflection point the antisym­
metric vibration is real and has a value of 19.9 cm"1. The molecule 
in this geometry has seven essentially zero frequencies corre­
sponding to the three translational and the three rotational modes 
plus the zero-frequency symmetric ring distortion mode. All other 
frequencies are real, including that of the low-energy antisym­
metric ring mode. This establishes firmly the presence of a positive 
inflection point in the energy hypersurface and shows that there 
is no energy minimum or even an energy extremum in the vicinity 
of the SCC form when the Boyd-9 force field is employed. 
Convergence to this inflection point cannot occur without intro­
ducing appropriate constraints. 

A single Newton-Raphson iteration starting at W4567 = 
124.555°, i.e., essentially at the positive inflection point, without 
any constraints on the torsional angles and with no limit on the 
allowed corrections to the coordinates gives a "blown apart" 
molecule with corrections >100 A, which is consistent with the 
expectations of an inflection point. The Hessian matrix of the 
starting geometry has then a nearly zero eigenvalue corresponding 
to the symmetric ring distortion mode, so the calculated corrections 
to the coordinates become divergently large. Iterations starting 
at other values of O)4567 (= W8912) give rise to an oscillating behavior 
that sooner or later becomes chaotic and results in large changes 
in the coordinates. The changes that take place are extremely 
sensitive to the precise starting geometry, just as in the case of 
the simple cubic equation in one-dimensional space discussed 
earlier. The situation is made more complex, however, because 
the lowest unsymmetrical ring mode is of extremely low frequency 
and itself becomes zero at 123.7°, so a loss of the C2 symmetry 
can occur because of numerical instabilities, even when double-
precision arithmetic is used in the FORTRAN calculations. Nor­
mally, the Newton-Raphson method maintains any symmetry 
element existing at the start of the iteration procedure,80 as long 
as the Hessian matrix is not truncated. 

The energies obtained by a similar symmetric driving of W4567 
and W8912 but with the MM2 instead of the Boyd-9 force field are 
also given in Figure 4 and show a local energy minimum at W4567 
= W8912 = 130.3°, the value expected for the SCC conformation.25 

The curve through the MM2 points has been calculated from a 
fit of the data between 118 and 135° to a cubic equation namely 

energy = 29.07 + 0.0040Aw2 + 0.00027Aw3 

with Aw = w - 130.3, where 130.3° is the value of W4567 and W8912 
for the SCC form. No first-power term has been employed in 
the fit, and as expected the quadratic term dominates and terms 
higher than the third are not needed, at least over the limited range 
of torsional angles used here. Essentially the same parameters 
are obtained for a fit to the data over a range of 125-135°. 
Calculations of the frequencies show that the SCC form is a local 
energy minimum with the MM2 force field, but it has two rather 
low frequencies (80 and 92 cm"1) corresponding to the symmetric 
and antisymmetric vibrations, respectively, that are shown in 
Figure 5 and have already been discussed in connection with the 
Boyd force field. When W4567 and decreased symme­
trically, the symmetric vibration first becomes imaginary at about 
125.5°, corresponding to a negative inflection point, and below 
about 125.5° the antisymmetric frequency becomes imaginary; 
i.e., an unsymmetrical geometry has then a lower energy than does 
the C2 geometry. This aspect of the energy hypersurface is 
consistent with an unsymmetrical transition state for the inter-
conversion of the SCC into the TCC form when the MM2 force 
field is used (Figure 4). Indeed, as was mentioned in the previous 
section, the transition state for interconversion of the SCC to the 
TCC conformation is close to the SCC, but unlike that confor­

ms) Both paths shown in Figure 4 correspond to C2 symmetrical geome­
tries and must be maxima or minima with respect to any loss of that sym­
metry. 

mation, it is (slightly) unsymmetrical with torsional angles cor­
responding to W4567 and W8912 of 122.9 and 125.5°. The transition 
state for conversion of the SCC to the TCC form involves both 
the symmetric and the antisymmetric low-energy vibrations, as 
can be seen from a comparison of the torsional angles in the 
(SCC-TCC)* and SCC geometries (Figure 3) together with the 
torsional angle displacements induced by these vibrations (Figure 
5). 

Table I also shows the energies of the global energy minimum, 
which is the [333] or TBC conformation (Z)3 point group sym­
metry) for all four force fields. The transition states given in Table 
I have each only one imaginary frequency. As discussed previ­
ously,15 entropy effects are important in controlling the populations 
of the cyclononane conformation, especially at room temperature 
or higher. 

Discussion 
The present work shows that the exploration of a conformational 

energy surface by methods that ignore all features other than local 
energy minima does not always give a satisfactory picture. The 
use of more than one force field can be helpful, but in general 
it is very desirable to determine the lowest energy transition states 
linking all pairs of conformations. Even if the latter is not done 
in a general way, the barrier separating conformations that have 
the same torsional sign sequence (with corresponding torsional 
angles of similar magnitudes) should be investigated carefully. 
A local energy minimum that has a very low frequency vibration 
is an indication that the energy surface requires careful exami­
nation. Ideally, one would like to know the energy hypersurface 
in terms of closely spaced grid points. 

The most important point on the conformational energy surface 
is no doubt the global minimum. Second in importance are the 
various local minima that are relatively close in energy to the global 
minimum. Next are the lowest energy transition states between 
the above energy minima. Of least significance in most appli­
cations are the higher local energy minima, their associated 
transition states, and positive inflection and other points. The 
TCTC and SCC forms belong to this latter category, and they 
do not have the possibly redeeming feature of greater symmetry 
than the very closely related TCC conformation. Unfortunately, 
the true potential energy hypersurface near the SCC geometry 
of cyclononane is not known, so whether a positive inflection point 
or a local energy minimum actually occurs in the real molecule 
is also unknown. Positive inflection points can, of course, be 
associated with any force field if the geometrical conditions are 
suitable, and such conditions may not be rare. For example, a 
positive inflection point may be generated from a double minimum 
energy surface having a small barrier separating the two minima 
by introducing a structural perturbation that raises the energy 
of one of the two potential energy wells above that of the transition 
state, as is the case with azetidine and related molecules in com­
parison to cyclobutane.26 

Raber and co-workers3 have stated that a local energy minimum 
that is much higher in energy than the global minimum may 
become important and possibly even the global energy minimum 
when substituents are introduced and, therefore, feel that pre­
viously ignored conformations such as TCTC, SCC, and the twist 
boat-boat (TBB, or so-called skewed boat-boat,3 SBB) in cy­
clononane have potential importance, even though they have a 
much higher energy than the global energy minimum. While this 
is no doubt correct, such a claim can also be made for many other 
points on the energy hypersurface, including points that are not 
energy extrema. The conformations of the cycloalkanes, with the 
exception of cyclopropane and chair cyclohexane, are rather 
flexible and, therefore, are fairly easily distorted by the presence 
of substituents, especially when placed unsymmetrically and in 
sterically hindered positions. Thus, the conformation of a sub­
stituted cycloalkane may not resemble very closely that of any 

(26) (a) Dutley, R.; Rauk, A.; Sorensen, T. S. J. Am. Chem. Soc. 1987, 
109, 3224-3228. (b) Moriarty, R. M. Top. Stereochem. 1974, S, 271-421. 
(c) Malloy, T. B., Jr.; Bauman, L. E.; Carreira, L. A. Top. Stereochem. 1979, 
11,97-185. 
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local energy minimum, whether of high or low energy, in the 
parent cycloalkane. Indeed, it is possible for conformational 
transition states to become energy minima when the constraints 
introduced by the substituents are sufficiently strong, as with a 
1,2-epoxide group in a six-membered ring. As an extreme ex­
ample, consider the substitution of pairs of hydrogens in the boat 
form of cyclooctane by ir bonds. The resulting 1,3,5,7-cyclo-
octatetraene is a local energy minimum in the boat form, whereas 
that conformation is a two-dimensional energy hill in cyclooctane. 
A more pertinent and typical example occurs in the conformational 
energy hypersurface of cyclohexene,27 where the half-chair is a 
local energy minimum and the boat a conformational transition 
state for enantiomerization of the half-chair. In derivatives of 
cyclohexene, at least in the crystalline phase, and where both 
substituent and crystal lattice effects28 influence the geometry of 
the molecule, forms (so-called sofa conformations) intermediate 
between the half-chair and the boat are frequently found.27 

For cyclononane the semisystematic Dale conformational no­
menclature715 has some advantages over that of Hendrickson,29 

which has been used recently by Raber and co-workers.3 The fact 
that the TCC, TCTC, and SCC forms all have the same name 
([9] or [144]) in the Dale scheme can be an advantage because 
these three forms are closely related variants of one another. The 
Dale nomenclature is also particularly appropriate for the [333] 
conformation, which has Z)3 symmetry, whereas Hendrickson's 
TBC label for this conformation does not indicate its high sym­
metry and is somewhat misleading because the [234] conformation 
(called SCB by Raber and co-workers3), which was not considered 
by Hendrickson, is a more natural candidate for the TBC label. 
Raber and co-workers3 have published MM2 data on the twist 
boat-boat (TBB or SBB) conformation of cyclononane, which they 
claim has been neglected without sufficient justification. However, 
that conformation has been explicitly considered previously and 
dismissed because of its very large energy15 and because it is not 
a significant intermediate in the interconversions of any of the 
other much lower energy cyclononane conformations. 

Conclusion 

Iterations using the full-matrix Newton-Raphson method 
without any constraints can show chaotic behavior in the vicinity 

(27) Anet, F. A. L. In The Conformational Analysis of Cyclohexenes, 
Cyclohexadienes, and Related Hydroaromatk Compounds; Rabideau, P. W., 
Ed.; VCH Publishers: New York, 1989; Chapter 1. 

(28) Pertsin, A. J.; Kitaigorodsky, A. I. The Atom-Atom Potential Me­
thod; Springer-Verlag: Berlin, 1987; p 193. 

(29) Hendrickson, J. B. J. Am. Chem. Soc. 1967, 89, 7036-7043, 
7043-7046, and references therein. 

of a positive inflection point. In contrast to the more usual negative 
inflection point, which acts as a repellent on the hypersurface, 
the positive type acts as an attractor and can lead to a more or 
less delayed and violent molecular explosion; a good analogy to 
the latter is the fatal attraction that a moth has to a flame. 
Nevertheless, convergence to such a dangerous spot on the hy­
persurface can be obtained with the Newton-Raphson method 
by suitably constraining some of the torsional angles and by 
monitoring the frequency and nature of the low-energy ring 
distortion modes. In geometries with symmetry, as in the TCC-
SCC system in cyclononane, this involves a simple one-dimensional 
search. 

We deduce that the newly discovered TCTC and SCC con­
formations of cyclononane have limited and questionable con­
formational significance for cyclononane itself. The current 
conformational picture of cyclononane has thus changed only a 
little from that described in 1980.15 For substituted cyclononanes, 
many other forms potentially need to be considered apart from 
the local energy minima of the parent ring. 

Extensive searches of the conformational energy hypersurface 
for local energy minima should, if at all possible, include the 
barriers separating pairs of conformations. If the search for local 
energy minima is at the limit of one's computational capacity in 
a given problem, then a search for transition state becomes out 
of the question, of course. Progress in searching for transition 
states and their significance is likely to be much more demanding 
in computer power than simply a search for local energy minima 
because it is not sufficient just to locate these saddle points on 
the energy hypersurface. It is necessary to find out how the local 
energy minima and the transition states are linked together, and 
this requires an exploration of a larger part of the hypersurface; 
fortunately, computing power has been continually increasing so 
that such a search may become practical. Once the energies and 
vibrational frequencies for a set of local energy minima and their 
associated significant transition states have been obtained for one 
force field, calculations for other force fields should require 
comparatively little extra time, provided that an appropriate 
program for dealing with a variety of force fields is available, 
because the hypersurfaces calculated with different force fields 
should be closely related in shape. 
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